从机器学习模型中删除指定的培训数据子集的影响可能需要解决隐私,公平和数据质量等问题。删除子集后剩余数据从头开始对模型进行重新审查是有效但通常是不可行的,因为其计算费用。因此,在过去的几年中,已经看到了几种有效拆除的新方法,形成了“机器学习”领域,但是,到目前为止,出版的文献的许多方面都是不同的,缺乏共识。在本文中,我们总结并比较了七个最先进的机器学习算法,合并对现场中使用的核心概念的定义,调和不同的方法来评估算法,并讨论与在实践中应用机器相关的问题。
translated by 谷歌翻译
Neural style transfer is a deep learning technique that produces an unprecedentedly rich style transfer from a style image to a content image and is particularly impressive when it comes to transferring style from a painting to an image. It was originally achieved by solving an optimization problem to match the global style statistics of the style image while preserving the local geometric features of the content image. The two main drawbacks of this original approach is that it is computationally expensive and that the resolution of the output images is limited by high GPU memory requirements. Many solutions have been proposed to both accelerate neural style transfer and increase its resolution, but they all compromise the quality of the produced images. Indeed, transferring the style of a painting is a complex task involving features at different scales, from the color palette and compositional style to the fine brushstrokes and texture of the canvas. This paper provides a solution to solve the original global optimization for ultra-high resolution images, enabling multiscale style transfer at unprecedented image sizes. This is achieved by spatially localizing the computation of each forward and backward passes through the VGG network. Extensive qualitative and quantitative comparisons show that our method produces a style transfer of unmatched quality for such high resolution painting styles.
translated by 谷歌翻译